Hotline: +971582164957

Op-Ed: Handysize Bulkers Would Make Useful Unmanned Surface Combatants

Op-Ed: Handysize Bulkers Would Make Useful Unmanned Surface Combatants

Op-Ed: Handysize Bulkers Would Make Useful Unmanned Surface Combatants

On October 6 2020, Secretary of Defense Mark Esper debuted Battle Force 2045. As foundational elements of U.S. naval force design, Secretary Esper emphasized the importance of very long-range precision fires in volume, while also ensuring naval forces continue to operate at the forward edge of American interests. The U.S. Navy has an opportunity to immediately use existing ship types that are currently fielded in large numbers as manned auxiliary-strike platforms, while leveraging ongoing investments and technology maturation in the commercial shipping world for future unmanned naval platforms. The Navy can become a fast-follower, leveraging these investments and technology developments to rapidly field a future autonomous auxiliary-strike platform as a key part of a future unmanned naval force structure.

Over the past several years, the U.S. Navy and Marine Corps have been focused on developing and implementing a concept for Distributed Maritime Operations (DMO). DMO, along with the associated Littoral Operations in a Contested Environment (LOCE) and Expeditionary Advanced Base Operations (EABO) concepts, all seek to address the increasing threat posed by the proliferation of sophisticated weaponry and combat systems among great powers and potential proxies. Additionally, the 2018 National Defense Strategy highlights the distinct and important roles of the contact, blunt, surge, and homeland defense layers of the Joint Force.

The subsequent implications for U.S. naval forces, joint forces, and combined forces are broad, but to date, have remained nascent in their implementation. The simple message is that ceding the littoral regions of the world to an adversary is unacceptable to the United States and likeminded allies and partners. The Littoral Combat Ship was an initial, albeit flawed, effort to address a long-debated return to littoral operations – the dominant feature of naval operations throughout history. A hybrid commercial-military approach to force projection in contested environments deserves closer examination, and is an approach that is immediately available. It offers an evolutionary and rapid path to the future.

Fundamental Principles in a 21st Century Maritime Competition: Numerous, Distributed, Persistent, and Nondescript

A critical aspect of the DMO concept that has rightly received attention is the need to resupply and rearm combatants in order to conduct protracted operations. Doing so in an environment where fixed targets, such as ports as well as large force concentrations are becoming increasingly vulnerable poses an ever-growing challenge. An alternative approach is needed, whereby unit-level maritime surface munitions batteries would be mobile and available for use when needed, rather than located in afloat resupply stockpiles. This approach, and the use of regionally-oriented vessels, would be linked to demands of littorals operations that are already prime considerations in the design and construction of commercial vessels in global trade today. In contrast, custom military-first solutions for this purpose run the risk of being unaffordable.

Although the Marine Corps and the Army are developing mobile land-based missile batteries and will be a crucial part of the missile strike capacity in the U.S. Marine Corps’ new Littoral Maneuver Regiments (LMRs), such forces will nonetheless face challenges. These include gaining and maintaining basing access from host nations, sufficient protection and maneuver to minimize attrition from preemptive strikes, and providing sufficient stockpiles for reloading land-based missile batteries.

As a result, sea-based solutions must also be considered, especially to support stand-in forces in the contact layer. However, limits will persist for surface platform rearming at sea. Approaches that employ weapons in quantity from tactical fighters or unmanned aerial vehicles face similar challenges, while being more hobbled by limits of endurance and payload. Although the deployment of the Virginia Payload Module will provide additional covert strike capacity from SSNs, this alone will not be sufficient to address the need.

U.S. Navy experiments with test-bed platforms, like DARPA’s Sea Hunter and the Strategic Capabilities Office’s (SCO) Overlord, continue to inform some of the US Navy’s thinking for the large and medium unmanned surface vessels (LUSV and MUSV). Although these efforts have yielded valuable lessons, significant additional modifications and enhancements are still required in order to become operationally deployable assets. The roadmap of potential solutions, specifically for unmanned surface capabilities and platforms, is still coming into focus, and emphasis remains on MUSV and LUSV as the key surface platforms for acquisition programs of record. Some have advocated for concepts and experimentation using missile barges or converted commercial vessels, such as container ships.

It is time for the U.S. Navy to step forward in support of the USMC’s renewed creative thinking surrounding land-based, stand-in forces and develop a “Littoral Maneuver Flotilla” for the complementary naval component to the LMR. While supporting, and supported by, land-based forces, these floating missile magazines could be used to coordinate more complex multi-axis attacks, drastically complicating adversary planning and capabilities for effective defense.

A Missing Piece for a Littoral Maneuver Flotilla: The Auxiliary-Strike Surface Platform

In order to apply the fundamental principles of numerous, distributed, persistent, and nondescript, a specific set of missions that can be appropriately and advantageously grouped together must be considered. These naval missions include logistical resupply, including both ship-to-ship and ship-to-shore; a floating munitions battery for strike, anti-surface warfare (ASuW), and anti-submarine warfare (ASW) missions; convoy escort; and mobile minelaying. A 2020 CRS report noted:

“The Navy wants LUSVs to be low-cost, high-endurance, reconfigurable ships based on commercial ship designs, with ample capacity for carrying various modular payloads — particularly anti-surface warfare (ASuW) and strike payloads, meaning principally anti-ship and land-attack missiles.”

Some nations (such as Russia, China, and Israel), have developed containerized deck-mounted weapons and others are contemplating them. However, their small numbers, need for supporting equipment, and conspicuous posture lessen their potential operational significance. Instead, a floating vertical launch system (VLS) battery could be employed to launch missiles for strike missions (anti-ship or land-attack), torpedoes, or mobile mines against surface or undersea targets. However, a floating VLS battery would still need to be controlled by a mothership or some other local controller (e.g. a surface combatant, aircraft, or spacecraft). In many cases, artificial intelligence is still not sufficiently mature and sufficient trust in autonomous systems has not been developed. Moreover, in addition to sophisticated net-enabled weapons, a floating VLS battery would require offboard targeting and fire control.

It is worth considering alternatives to the commercially adapted, but more militarized designs of the LUSV and MUSV, which will be neither cheap, nor non-descript. In the late 2000s, NAVSEA conducted a study that looked at using Military Sealift Command dry cargo ships as first salvo strike platforms, leaving surface combatants for follow-on engagements. However, this concept was not pursued, and the Navy instead focused on different technical approaches to enable rearming at sea. With the recent track record of naval ship design, a “clean sheet” new T-AKE class would likely result in a complex, high-cost, and conspicuous design.

Instead, handysize break bulk carriers sail in large numbers today and are IMO-compliant double-hull designs. Use of such existing ships would allow the Navy and Marine Corps to gain immediate experience with the concept and further develop and refine approaches, while only requiring small crews of operators. At the same time, during the last five years, efforts have been underway to develop and experiment with autonomous commercial shipping, including major ongoing efforts in Finland, Norway, Sweden, Japan, Singapore, and South Korea, among others. As these autonomous ships mature and begin to sail in significant numbers in their respective regions, the Navy can then smartly shift over to employing these vessels for the auxiliary-strike role. In the framework of the NDS, these vessels would be a persistent contact force, but with blunt force abilities and capacity.

“Gray Man” at Sea: A Nondescript, Effective Platform for the Shell Game

An approach that initially leverages manned, break bulk vessels, and then progresses to unmanned autonomous shipping vessels will allow immediate fielding of increased numbers of surface strike assets, while at the same time developing, de-risking, and experimenting with key technologies as they mature. Indeed, it would follow the wisdom of Rear Admiral Wayne E. Meyer’s famous motto of “build a little, test a little, learn a lot” while rapidly expanding the number of distributed surface strike assets today and into the future. Deception would be enhanced by the clever use of ubiquitous common commercial hulls in this shell game.

Using commercial vessel ship classes that could accommodate weapons modules and launch cells (e.g. either Mk41 or Mk57 VLS) with minimal modifications would, at reasonable cost, substantially increase the numbers of launchers available that could be employed in the earlier stages of a conflict and support stand-in forces in the contact layer. The Mk57 VLS developed and employed on the DDG-1000 includes options for additional munitions and extra hardening for payload protection. The standardization of both Mk41 and Mk57 VLS permit numerous and varied weapons loadout options, and the VLS modules can be distributed in configurations within the ship to minimize risk of damage, while also confusing adversary targeting through both inter-ship and intra-ship deception. Instead of cumbersome and time-consuming weapons reloads in individual cells, replacing fully loaded modules with a quick swap-out in available ports or at safe-anchorages could be used for logistical sustainment.

Notional estimates would suggest these vessels could carry payloads ranging from 16 to 100 or more VLS cells, sufficient to have diverse payloads and enable effective strikes, while not allowing the vessels to become large and lucrative targets, whose potential loss would be unacceptable. The objective is to have numerous, dispersed, persistent and nondescript mini arsenal ships, not a small number of massive capital ship assets.


TIMELOG shipping as NVOCC operator and carrier company with the capabilities to efficiently manage the movement of varied types of cargo between ports in Asia and global inland.

Contact Us

    Office  : Unit 1105 , Citadel Tower ,Business Bay , Dubai , UAE.
    Tel : +97145576569
    Fax : +97145573919